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Abstract 

We determine the one loop QCD matching between lattice and continuum theories 
of the chromomagnetic moment operator. The operator is responsible for breaking 
the degeneracy of B and B' mesons at order l/m in the static approximation. 
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1. Introduction 

The experimentally known B-B* mass splitting [I] can provide a test of heavy quark 

methods [2]-[13]. At zeroth order in the l/m expansion the B and B’ mesons are 

degenerate. At first order in the expansion, the degeneracy is broken solely by 

the chromomagnetic moment operator [8]. Th e coefficient of this operator in the 

continuum static effective theory has been determined to order as [8][13]. The 

matrix elements of operators in the static effective field theory must be evaluated 

using lattice gauge theory [7][8] or other nonperturbative methods. In this paper we 

perform the renormalization required for the lattice gauge theory determination of 

matrix elements of the chromomagnetic moment operator and relate B-B* splitting 

to one such matrix element. 

The paper is organized as follows. In section two, we review the determination 

of the coefficient of the chromomagnetic operator in the static effective field theory 

and relate B-B* mass splitting to a particular matrix element of the operator. In 

section three we review the background field method on the lattice and make a 

choice of lattice operator. Then in the fourth section, we determine the coefficient 

of the operator to one loop. Our conclusions are in section five. 

2. Continuum Result 

At zeroth order in l/m, the static effective field theory is independent of the spin of 

the heavy quark. At first order in l/m (after applying the zeroth order equations of 

motion) two dimension-five operators, C&, and Ornag, appear in the static effective 

field theory. In Minkowski space the Lagrangian is, 

L = b’iVob -I ZkhOkin i- .&agOmsgr (2.1) 

where iv,, = iE$ + gA, is the gauge cow&ant derivative, and b and bt are the 

bare heavy quark fields which satisfy canonical commutation relations. Only the 

chromomagnetic moment operator, &,.,&, breaks the SU(2) symmetry [6] which 

acts on the heavy quark field. Thus we do not need to reproduce the form of oki, 

here. Ornag is, 

0 i b’t<jbgiIDjVkb. 
mag = 5% 

(2.2) 

I 



In reference 1131, Zmag was determined to full order a~ using the background field 

method (reviewed in reference [14]). This w&s done by matching the part of the 

background field effective action that is first order in the background field and has 

two external fermion lines. The full order a~ result for the coefficient, Zmagr of the 

chromomagnetic moment operator in the static effective field theory is 

zg, = 2--- $ cf-~pdj+~pdj 

In this equation C’ 1 = C, TAT,’ and Cadj 1 = JJ, Z’$T,“dj, with values 4/3 and 3 

respectively for gauge group SU(3). These results apply to any matrix element of 

the chromomagnetic moment operator. 

In the static limit all four of the B and B' states are degenerate because they 

are part of an SU(2) x SU(2) multiplet. The first factor is the SU(2) discussed 

above which acts on the heavy quark field. The second factor acts on all other 

spinors and vectors and on the arguments of fields. The chromomagnetic moment 

operator is invariant only under the ordinary rotation group, which is the diagonal 

subgroup of these two SU(2)‘s. 

We wish to relate the B-B' mass splitting to EL matrix element of the 

chromomagnetic moment operator which can be measured on the lattice. Define 

Eo and A by 

Eo is the center of gravity of the four states and A is the splitting. At zeroth order 

in the l/m expansion, the B and B' states can be classified by their heavy quark 

spin and the remainder of the total angular momentum: 

,Be) = ITl) + IlT), 
d 

,B) = ITl) - IJT) 
a ’ 

(2.5) 

where we have written down just one B' state with J, = 0. 

With these definitions and using a nonrelativistic normalization of states, an 

expression for A valid to first order in the l/m expansion is 

A(2x)sS(s)(p - p’) = 2 Re (p’ ITI H Ip TJ). 
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The part of Ei contributing to this matrix element is -Jd% ZmagOmsg, where Zm.s 

is the coefficient of Ornag in the static effective field theory. An additional factor of 

2, the wave function renormalization of the heavy quark, would appear here and 

in each term of the Lagrangian, Eq. (2.1), had we not written them in terms of 

heavy quark fields satisfying canonical commutation relations. Inserting this into 

the above expression, 

A = -2 Re (IT1 .LagGas ITl). (2.7) 

We thus have an expression for A in terms of a matrix element which we can 

determine using lattice gauge theory. 

3. Lattice Operators 

Here we write down the background field lattice action for the gauge fields 1151 and 

then give our choice of discretization of the chromomagnetic moment operator. The 

Wilson plaquette action is, 

SW = $g C tr (V&n) + UJ”(n)) . 

I& 
(3.1) 

For the plaquette labelled by site n and directions /.L and V, we have, in the 

background field formulation, 

Up,(n) = Up(n)VJn + e,,qcn + %,Q(4, (3.2) 

where. 

U,(n) = V,(nPc,(n), VJn) = =iPa QrW, Ucp(n) = eigaA*(n). (3.3) 

Here Q,(n) is the quantum field and A,( n is the background field. The lattice ) 

spacing is denoted by a. 

In background field Feynman gauge, the gauge fixing term is 

S&f = a4 C tr (D;Q,WD;Q,(~)) , 
A 
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where D; is a background field lattice covariant derivative, 

aDiQ~(n) = u.i-j(n - eII)QY(m - e,)U=,,(n - e,,) - QY(~). (3.5) 

We also need a discretization of the chromomagnetic moment operator which 

in the continuum is given by Eq. (2.2). In the Euclidean lattice theory we choose, 

pt 
mag = ~bt(n)aieijkF~~“(n)b(n), 

with, 

a2gF$‘t(TZ) = $ [ujk(n) + uk,-j(n) + U-j,-k(n) + u-k,j(TL) - h.c.1. (3.7) 

This is gauge invariant, satisfies lattice cubic rotational invariance and has C&,,,s 

as its naive continuum limit. With the phase conventions for the heavy quark part 

of the lattice action used in reference [16], and the above definition for Ogig, the 

coefficient of the operator in the Euclidean action is one at tree level. (Since the 

naive continuum limit of the conventional lattice covariant derivative is 8, + igA, 

rather than 8, - igA,, there is an apparent sign disagreement with the continuum.) 

4. One Loop Calculations 

Following the procedure reviewed in section 2, we calculate the part of the 

background field gauge generating functional with one external background field, 

an incoming heavy quark, an outgoing heavy quark and one insertion of the 

chromomagnetic moment operator. We expand the amplitude up to terms linear in 

k, the momentum inserted by the background gauge field. The tree level diagram 

is shown in Figure 1. 

In the continuum static theory we work in background field Feynman gauge, 
- 

regulate in the ultraviolet with MS and use a gluon mass X to regulate infrared 

divergences. Then we find that the one-loop IPI graphs give a contribution that is 

a factor of 
2 - 

16x2 
-2p* in $ - 2 (cf - $4) in $1 (4.1) 
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times the tree level vertex. We also need to add in the heavy quark wavefunction 

renormalization in this scheme which is at order g2, 

z(2) = 92 
16~2 

2C’ln $. 

Obtaining vertices from the lattice action and chromomagnetic moment oper- 

ator in Section 3 the one-loop 1PI diagrams on the lattice are obtained and shown 

in Figure 2. The diagrams in Figure 2(d) and 2(e) do not contribute in background 

field Feynman gauge since the propagating gluon is required to carry a spatial index 

by the chromomagnetic moment operator and a time index by the coupling to the 

heavy quark. The diagrams in Figure 2(f) h ave no terms linear in ki and a possible 

term linear in ko in fact vanishes. Hence we need calculate only the diagrams in 

Figures 2(a), 2(b) and 2(c). For this we need the lattice Feynman rules for the 

chromomagnetic moment operator of equation (3.6) with one background field, two 

quantum fields or one background field and two quantum fields. On the lattice, the 

vertex appearing in Figure 1 has Feynman rule 

2 c aiqj, g$-‘k,’ - +‘)(l + e’“ma). 
‘1 

Expanded to first order in k this becomes, 

The vertices with two quantum fields or two quantum and one background field are 

considerably more complicated so we do not quote their Feynman rules here. For 

example the two-quantum one-background field part of the lattice chromomagnetic 

moment operator contains 160 terms. Note that this vertex is peculiar to the lattice, 

hence so is the diagram in Figure 2(a) which contains it. 

The result of the computation is that the one loop graphs give the tree vertex 

of equation (4.4) multiplied by the following factor: 

g2 __ 
16x2 

- &cf _ D c-y-4 

- (Dt, - 21n:sa’)Cndj 

-(D.-21nAaoZ)(Cr-$Ydl)}. 
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The three lines inside the curly braces come from diagrams 2(a), 2(b) and 2(c) 

respectively. The quantities Di are evaluated numerically using the Monte Carlo 

integration routine VEGAS [17] and take the values, 

D. = 3.55 Db = 1.30 D, = 4.53. (4.6) 

Errors are at most order one in the last decimal place. Analytical expressions for 

these numerical constants are listed in the appendix. 

The background field lattice heavy quark wavefunction renormalization in 

Feynman gauge at order g2 is 1161, 

2 
Zl”” (2) - -&CT’ [e-21nX2aZ 19 (4.7) 

where the constant e has the value 24.48. An expression for e is given in the 

appendix. 

Now we match the 1PI functions in the continuum and lattice static theories 

with the result that the order g2 contribution to the renormalization constant 

Zk’, is the difference of the one loop graphs in the continuum and on the 

lattice, equation (4.1) minus equation (4.5), pl us the difference of the heavy quark 

wavefunction renormalieations, equation (4.2) minus equation (4.7): 

zL’t(2) _ 
m-g 

g2 
16x2 

- Cadj In /.&zz + C’( D, - e + 4~‘) 

(4.8) 
+ p-4 (D.+D,-+D,)). 

The result is independent of the gluon mass X which was introduced as an infrared 

regulator. We have obtained the same result with a hard momentum space infrared 

cutoff. 

5. Conclusion 

To obtain the coefficient of the lattice chromomagnetic moment operator, we take 

the product of Z&s and .Z$. From Equation (2.3) using a strong coupling with 

A% of 200 MeV, a b-quark mass of 5 GeV and a scale ,u of 2 GeV, we find that to 

order g”, Zm.s = 1.06. There is a significant uncertainty in the numerical value of 
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the second factor due to the uncertainty in the value of as in the matching to the 

lattice regulated theory. Taking, for example, a value of os at an inverse lattice 

spacing of 2 GeV that is 1.8 times the bare lattice value of 1/4x [18], we find that to 

order g2, ZEs = 1.39. With these values we find that 2,.,2&i = 1.47 to order g2, 

a large correction to the tree level result. 

Calculating the matrix element of Omsg in Eq. (2.7) on the lattice will 

give a quantitative prediction of B-B’ splitting. Unlike many hadronic spectra 

calculations performed using lattice gauge theory, the determination of this splitting 

from the matrix element of a hadronic operator strongly parallels the approach 

already being used to determine weak matrix elements. It will provide a significant 

test of the heavy quark effective theory approach to determining the properties of 

heavy-light systems, such as the B meson decay constant and mixing parameter. 

More generally, we expect l/m corrections to be important in D and B meson 

systems. The renormalization of the discretiaed chromomagnetic moment operator 

performed here is necessary for corrections to a variety of phenomenologically 

relevant quantities. One might expect that in B mesons l/m corrections to 

quantities like f~ would be of order 5% and in D mesons they could be of order 15%. 

In this case, they could account for part of the discrepancy between the D and 

B meson decay constants which have been measured by two different lattice gauge 

theory methods (see reference [19] for a recent review). 
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Appendix. Numerically Evaluated Constants 

In this appendix, we express the numerically evaluated factors in the renormaliza- 

tion constants. Following reference [ZO] we introduce the following notation: 

A1=CPsinz$, 

Ar = c, sin2 q@. 
(A.11 

The sums on ~1 run from 1 to 4. Let A!:’ be identical to Al except with (14 set to 

zero. The quantities Da, Db, D, and e are given by 

&&-$ 
4A1 

2 Db=D,-~&-+Pq~-- 
379 64A: 6 ’ 

DC=--24 d4q 2 
J [( 

2. 
16A: 

(A.21 

1 e=Dc+;/d3q-~ 
4A? 

Each integration variable is in the range [-r, ?r]. 
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Fig. 1: ‘he level diagram 
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Fig. 2: One loop one particle irreducible diagrams 
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